大家好,如果您还对配对样本t检验原理不太了解,没有关系,今天就由本站为大家分享配对样本t检验原理的知识,包括男女配对样本t检验的问题都会给大家分析到,还望可以解决大家的问题,下面我们就开始吧!
本文目录
t检验和配对t检验有什么区别独立样本T检验与配对样本T检验的区别独立样本t检验和配对样本t检验的共同点和不同点一、适用条件不同:
1、成组t检验适用于非配对设计或成组设计两样本平均数差异显著性检验;
非配对设计或成组设计,当进行只有两个处理的试验时,将试验单元完全随机地分成两个组,然后对两组随机施加一个处理。
两组的试验单位相互独立,所得的二个样本相互独立,其含量不一定相等。
每组资料近似正态分布(或大样本),满足方差齐性,则可采用成组t检验。
2、配对t检验适用于配对设计两样本平均数差异显著性检验。
适用以下情况:
(1)同一样本接受不同处理的比较;
(2)对同一个受试对象处理前后的比较;
(3)将受试对象按情况相近者配对,分别给予两种不同处理,观察两种处理效果有无差别。
二、检验假设不同
1、成组t检验无效假设 H0:μ1=μ2;
备择假设 H1:μ1不等于μ2。
2、可将配对设计资料的假设检验可视为样本均数与总体均数μd=0的比较。
H0:μd=0(即差值的总体均数为0);
H1:μd不为0(即差值的总体均数不为0)。
三、计算公式不同
1、成组t检验计算t值的公式:
2、配对t检验计算t值的公式:
四、检验效率不同
1、样本例数相同时,计量资料的成组检验比配对t检验检验效率低;
2、样本例数相同时,配对t检验效率高;因为采用配对方式,把一些对实验结果有影响的因素(如性别、体重等)进行匹配,消除了这些因素带来的干扰,降低了误差。
参考资料:
百度百科——t检验
1、适用范围不同
独立样本t检验的数据来源是独立的样本,如同一个班级中男生和女生的成绩是否有差异;而配对样本t检验的范围是同一组对象,例如一个班级中的女生第一次月考和第二次月考的成绩是否有差异。
2、数据性质不同
独立样本t检验中的各实验处理组之间毫无相关存在,即为独立样本,该检验用于检验两组非相关样本被试所获得的数据的差异性;而配对样本t检验的数据是检验匹配而成的,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,组成的样本即为相关样本。
3、t检验统计量计算公式不同
独立样本t检验统计量为:
其中S1^2和 S2^2为两样本方差;n1和n2为两样本容量。
而配对样本t检验的统计量为:
其中,Sd为配对样本差值之标准偏差,n为配对样本数。
参考资料来源:百度百科-T检验
共同点:都是对两水平数据均值的比较。
不同点:独立样本t检验用于组间设计的比较(即不同的被试接受不同的实验处理),而配对样本t检验用于组内设计的比较(即每个被试都接受所有实验处理)
独立样本:观测值相互独立的随机样本。有时指相互独立的两个或两个以上随机样本。
配对样本:从总体中随机抽取一部分观察单位,某变量的实测值构成样本。如总体是某地某年全部正常成年人(的血压值),从中随机抽取部分正常成年人,分别测得其血压值,组成样本。抽取样本的方法可以是随机的也可以是非随机的,样本有时可能代表总体,有时也不一定能代表总体。
拓展资料:统计学分类
①整群样本:以人群为单位而不是以个体为单位进行抽样而得的样本。如一个城市街区或一个家庭的全部人员。
②随意样本:通常指在选取样本时,采用了易于获得样本的抽样方式,基本上属于非概率的抽样方法,例如,街上行人和随便到检查站的志愿者血压的调查。因为无法知道这种样本存在何种偏倚,因此,根据这种样本的调查结果进行推论是不适当的。
③概率样本:总体中每个个体均有一已知的概率在样本中出现。如果为单纯随机抽样,则每个个体均有一相等的机会被抽取为样本;如果采用分层抽样的方法,为使某些亚层具有较大的代表性,不同亚层的抽样比例可以有所不同。取得概率样本的方法是,首先对总体中每个人用字母或数字依次编号,或根据居住地区编组,然后按一定顺序选择。
④单纯随机样本:用随机方法从总体中抽出样本。最好用随机表或随机数字来抽样,直到所抽的样本达到要求为止。此法使总体中每个个体有同等被抽到的机会。
⑤分层随机样本:根据某种特征,如年龄,社会经济状况等,把总体分成若干亚组,每个亚组中的每个个体有相等机会被抽到。
配对样本百度百科
好了,文章到这里就结束啦,如果本次分享的配对样本t检验原理和男女配对样本t检验问题对您有所帮助,还望关注下本站哦!